Know What is Data and its Type: डाटा क्या है: डेटा के प्रकार, और डाटा का एनालिसिस कैसे करें?

Safalta Experts Published by: Nikesh Kumar Updated Tue, 21 Dec 2021 07:47 PM IST

कंप्यूटर के आविष्कार के बाद से, लोगों ने कंप्यूटर की जानकारी को संदर्भित करने के लिए डेटा शब्द का इस्तेमाल करना शुरु किया, और यह जानकारी या तो प्रेषित या संग्रहीत दोनो रुप में हो सकती थी। लेकिन केवल यही डेटा परिभाषा नहीं है; अन्य प्रकार के डेटा भी मौजूद हैं। तो, डेटा क्या है? डेटा टेक्स्ट या कागजों पर लिखे गए नंबर हो सकते हैं, या यह इलेक्ट्रॉनिक उपकरणों की मेमोरी के अंदर बाइट्स और बिट्स हो सकते हैं, या यह ऐसे तथ्य हो सकते हैं जो किसी व्यक्ति के दिमाग में जमा हो जाते हैं। और इस लेख में, हम निम्नलिखित विषयों को विस्तार से कवर करेंगे:

Source: Safalta


 
डेटा को एक विशेष मात्रा के व्यवस्थित रिकॉर्ड के रूप में परिभाषित किया जा सकता है। यह उस मात्रा के विभिन्न मान हैं जो एक समुच्चय में एक साथ प्रदर्शित होते हैं। यह एक सर्वेक्षण या विश्लेषण जैसे विशिष्ट उद्देश्य के लिए उपयोग किए जाने वाले तथ्यों और आंकड़ों का संग्रह है। जब एक संगठित रूप में व्यवस्थित किया जाता है, तो इसे सूचना कहा जा सकता है। डेटा का स्रोत (प्राथमिक डेटा, द्वितीयक डेटा) भी एक महत्वपूर्ण कारक है।

Free Demo Classes

Register here for Free Demo Classes


 
डाटा के प्रकार-
 
डाटा क्वालिटेटिव या क्वांटिटेटिव हो सकता है। एक बार जब आप उनके बीच का अंतर जान लेते हैं, तो आप उनका उपयोग करना जान सकते हैं।
 
 क्वालिटेटिव डाटा- वे कुछ विशेषताओं या विशेषताओं का प्रतिनिधित्व करते हैं। वे उन विवरणों को चित्रित करते हैं जिन्हें देखा जा सकता है लेकिन गणना या गणना नहीं की जा सकती है। उदाहरण के लिए, आपकी कक्षा के छात्रों से एक नमूने का उपयोग करके एकत्र की गई बुद्धिमत्ता, ईमानदारी, ज्ञान, स्वच्छता और रचनात्मकता जैसी विशेषताओं पर डेटा को गुणात्मक के रूप में वर्गीकृत किया जाएगा। वे प्रकृति में निर्णायक की तुलना में अधिक खोजपूर्ण हैं। ये आमतौर पर ऑडियो, इमेज या टेक्स्ट माध्यम से निकाले जाते हैं। एक अन्य उदाहरण स्मार्टफोन ब्रांड का हो सकता है जो वर्तमान रेटिंग, फोन का रंग, फोन की श्रेणी आदि के बारे में जानकारी प्रदान करता है। यह सारी जानकारी क्वालिटेटिव डाटा के रूप में वर्गीकृत की जा सकती है। इसके अंतर्गत दो उपश्रेणियाँ हैं:
 
सांकेतिक(Nominal)- ये उन मूल्यों के समूह हैं जिनमें प्राकृतिक क्रम नहीं होता है। इसे कुछ उदाहरणों से समझते हैं। स्मार्टफोन के रंग को सांकेतिक डाटा प्रकार माना जा सकता है क्योंकि हम एक रंग की तुलना दूसरों से नहीं कर सकते।
 
यह कहना संभव नहीं है कि 'लाल' 'नीले' से बड़ा है। एक व्यक्ति का लिंग एक और है जहाँ हम पुरुष, महिला या अन्य के बीच अंतर नहीं कर सकते। मोबाइल फोन कैटेगरी चाहे वह मिडरेंज हो, बजट सेगमेंट हो या प्रीमियम स्मार्टफोन भी सांकेतिक डाटा टाइप है।

एक सफल डेटा एनालिटिक्स करियर कैसे बनाएं
 
क्रमवाचक(Ordinal)-
 
मूल्यों के अपने वर्ग को बनाए रखते हुए इस प्रकार के मूल्यों में एक प्राकृतिक क्रम होता है। यदि हम कपड़ों के ब्रांड के आकार पर विचार करते हैं तो हम उन्हें उनके नाम टैग के अनुसार छोटे <मध्यम <बड़े के क्रम में आसानी से क्रमबद्ध कर सकते हैं। एक परीक्षा में उम्मीदवारों को चिह्नित करते समय ग्रेडिंग प्रणाली को एक क्रमिक डाटा प्रकार के रूप में भी माना जा सकता है जहां ए + निश्चित रूप से बी ग्रेड से बेहतर है।
 
क्वांटिटेटिव डाटा-
 
इन्हें मापा जा सकता है न कि केवल देखा जा सकता है। उन्हें संख्यात्मक रूप से दर्शाया जा सकता है और उन पर गणना की जा सकती है। उदाहरण के लिए, आपकी कक्षा के अलग-अलग खेल खेलने वाले विद्यार्थियों की संख्या का डेटा यह अनुमान लगाता है कि कुल कितने विद्यार्थी कौन-सा खेल खेलते हैं। यह जानकारी संख्यात्मक है और इसे मात्रात्मक के रूप में वर्गीकृत किया जा सकता है। यह डेटा प्रकार चीजों को मापने की कोशिश करता है और यह संख्यात्मक मानों पर विचार करके करता है जो इसे प्रकृति में गणनीय बनाते हैं। स्मार्टफोन की कीमत, छूट की पेशकश, किसी उत्पाद पर रेटिंग की संख्या, स्मार्टफोन के प्रोसेसर की आवृत्ति, या उस विशेष फोन की रैम, ये सभी चीजें मात्रात्मक डेटा प्रकारों की श्रेणी में आती हैं।

यह भी पढ़ें
स्टार्टअप्स के लिए 10 सर्वश्रेष्ठ डिजिटल मार्केटिंग स्ट्रेटजी क्या हैं?
 
डिस्क्रीट (Discrete)-
 
संख्यात्मक मान जो नीचे आते हैं वे पूर्णांक होते हैं या पूर्ण संख्याएँ इस श्रेणी के अंतर्गत रखी जाती हैं। फोन में स्पीकर्स की संख्या, कैमरा, प्रोसेसर में कोर, सिम्स की संख्या समर्थित ये सभी असतत डेटा प्रकार के कुछ उदाहरण हैं।
 
कंटीन्यूअस (Continuous)-
 
भिन्नात्मक संख्याओं को सतत मान माना जाता है। ये प्रोसेसर की ऑपरेटिंग फ्रीक्वेंसी, फोन के एंड्रॉइड वर्जन, वाईफाई फ्रीक्वेंसी, कोर के तापमान आदि का रूप ले सकते हैं।
 
5 चरणों में डाटा एनालाइज कैसे करें-
 
अपने डाटा एनालाइज करने के तरीके को बेहतर बनाने के लिए, डाटा एनालाइज प्रक्रिया में इन चरणों का पालन करें:

यह भी पढ़ें
क्या 12वीं पास कर सकते हैं डिजिटल मार्केटिंग
 
चरण 1: अपने लक्ष्यों को परिभाषित करें-
 
अपने डाटा एनालाइज में कूदने से पहले, स्पष्ट लक्ष्यों को परिभाषित करना सुनिश्चित करें। आप डेटा से क्या प्राप्त करना चाहते हैं? आप किस समस्या या स्थिति को हल करने या समझने की कोशिश कर रहे हैं? इसे जानने से आपको यह पहचानने में मदद मिलेगी कि आपको कौन सा डेटा एकत्र करने की आवश्यकता होगी।
 
एक विशिष्ट समस्या और संभावित समाधानों के आसपास अपने प्रश्नों को डिज़ाइन करें।
 
उदाहरण के लिए, यदि आप ग्राहक सहायता के बारे में पूछे गए प्रश्न से संबंधित कम CSAT स्कोर में अचानक वृद्धि देखते हैं, तो आप समस्या को हल करने के लिए निम्नलिखित प्रश्न पूछ सकते हैं।
 
लक्ष्य: ग्राहक सहायता में सुधार करना
 
1. ग्राहक हमारी सहायता टीम से नाखुश क्यों हैं?
2. हम ग्राहक सेवा में सुधार कैसे कर सकते हैं?

यह भी पढ़ें
इन 6 तरीकों से आप कर सकते हैं सोशल मीडिया मार्केटिंग
 
चरण 2: तय करें कि लक्ष्यों को कैसे मापें-
 
एक बार जब आप अपने लक्ष्यों को परिभाषित कर लेते हैं, तो आपको यह तय करना होगा कि उन्हें कैसे मापना है।
 
उदाहरण के लिए, यदि आप व्यक्तिगत समर्थन एजेंट के प्रदर्शन को मापना चाहते हैं, तो आप यह पता लगाने के लिए संख्यात्मक डेटा में खुदाई कर सकते हैं कि किसी ग्राहक को प्रतिक्रिया देने में प्रत्येक एजेंट को औसतन कितना समय लगता है। फिर, प्रत्येक एजेंट के प्रदर्शन को समग्र औसत के विरुद्ध मापें।
 
चरण 3: अपना डेटा एकत्र करें-
 
अब जब आप जानते हैं कि आपके लक्ष्य क्या हैं और आप उन्हें कैसे मापना चाहते हैं, तो आप सही प्रकार का डेटा एकत्र करना शुरू कर सकते हैं। जबकि मात्रात्मक और गुणात्मक दोनों डेटा एकत्र करना सबसे अच्छा अभ्यास है, आपको उन प्रश्नों के लिए प्रासंगिक डेटा एकत्र करने की भी आवश्यकता होगी जिनका आप उत्तर देने का प्रयास कर रहे हैं।
 
क्वांटिटेटिव डाटा- संरचित डेटा जिसे परिमाणित और मापा जा सकता है। उदाहरण के लिए, टैग और संख्यात्मक डेटा,
 
क्वालिटेटिव डाटा- असंरचित डेटा जिसे अंतर्दृष्टि के लिए खनन करने से पहले संरचित करने की आवश्यकता होती है। उदाहरण के लिए, पाठ, भाषण, चित्र, वीडियो।

यह भी पढ़ें
करियर के लिए डेटा साइंस क्यों चुनें
 
चरण 4: अपने डेटा को एनालाइज करें-
 
डाटा एनालिसिस उपकरण, जैसे एक्सेल, गूगल शीट्स, और एयरटेबल, और व्यापार खुफिया उपकरण, जैसे झांकी और Google डेटा स्टूडियो, क्रंचिंग नंबरों के लिए उत्कृष्ट हैं। वे आपको अपने मात्रात्मक डेटा में प्लग इन करने और व्यापक विज़ुअलाइज़ेशन, चार्ट और ग्राफ़ बनाने की अनुमति देते हैं।
 
ये उपकरण डाटा एनालिसिस के साथ आरंभ करने के लिए बहुत अच्छे हैं, लेकिन अधिक जटिल डाटा एनालिसिस विधियां हैं जिनका उपयोग आप अपने विश्लेषण के साथ और भी गहराई तक जाने के लिए कर सकते हैं। 
 

Related Article

CTET Answer Key 2024: दिसंबर सत्र की सीटेट परीक्षा की उत्तर कुंजी जल्द होगी जारी, जानें कैसे कर सकेंगे डाउनलोड

Read More

CLAT 2025: दिल्ली उच्च न्यायालय ने एनएलयू को दिया क्लैट परीक्षा के नतीजों में संशोधन का आदेश, जानें पूरा मामला

Read More

UP Police: यूपी पुलिस भर्ती का आवेदन पत्र डाउनलोड करने का एक और मौका, यूपीपीआरपीबी ने फिर से सक्रिया किया लिंक

Read More

JEE Advanced 2025: जेईई एडवांस्ड के लिए 23 अप्रैल से शुरू होगा आवेदन, जानें कौन कर सकता है पंजीकरण

Read More

UPSC CSE Mains 2024 Interview Schedule out now; Personality tests from 7 January, Check full timetable here

Read More

Common Admission Test (CAT) 2024 Result out; 14 Students Score 100 Percentile, Read here

Read More

CAT Result: कैट परीक्षा के परिणाम जारी, इतने उम्मीदवारों ने 100 पर्सेंटाइल स्कोर किए हासिल; चेक करें रिजल्ट

Read More

CBSE: डमी प्रवेश रोकने के लिए सीबीएसई का सख्त कदम, 18 स्कूलों को जारी किया कारण बताओ नोटिस

Read More

Jharkhand Board Exam Dates 2025 released; Exams from 11 February, Check the full schedule here

Read More