Pros and Cons of Data Science: करियर के लिए डेटा साइंस क्यों चुनें? जानें फायदे और नुकसान

Safalta Experts Published by: Nikesh Kumar Updated Fri, 10 Dec 2021 05:31 PM IST

डेटा साइंस एक क्रांतिकारी तकनीक बन गई है जिसके बारे में हर कोई बात करता है। '21वीं सदी में सबसे अधिक लुभाने वाली नौकरी' के रूप में चर्चित, डेटा साइंस एक चर्चा का विषय है।

Source: Safalta


 
बहुत से लोग डेटा साइंटिस्ट बनना चाहते हैं, लेकिन डेटा साइंस में करियर बनाने से पूर्व इसके फायदे और नुकसान जान लेना अनिवार्य है। इस लेख में, हम इन्हीं बिंदुओं पर विस्तार से चर्चा करेंगे और आपको डेटा साइंस के बारे में आवश्यक जानकारी प्रदान करेंगे।

Free Demo Classes

Register here for Free Demo Classes


 
डेटा साइंस के फायदे
 
डेटा साइंस (Data Science) के फायदे इस प्रकार हैं:
 
1. यह डिमांड में है
 
डेटा साइंस की काफी डिमांड है। यह लिंक्डइन पर सबसे तेजी से बढ़ने वाली नौकरी है। इस क्षेत्र में 2026 तक 11.5 मिलियन रोजगार सृजन की बात कही गई है।
 
2. पदों की प्रचुरता
 
बहुत कम लोग होते हैं जिनके पास संपूर्ण डेटा साइंटिस्ट बनने के लिए आवश्यक स्किल्स होते हैं। यह अन्य आईटी क्षेत्रों की तुलना में डेटा साइंस कम saturated है। इसलिए, डेटा साइंस में बहुत सारे अवसर हैं। डेटा साइंस में पेशेवरों की मांग अधिक है लेकिन उनकी आपूर्ति कम हो रही है।
 
3. एक अत्यधिक भुगतान वाला करियर
 
डेटा साइंस सबसे अधिक भुगतान वाली नौकरियों में से एक है। ग्लासडोर के अनुसार, डेटा वैज्ञानिक प्रति वर्ष औसतन 116,100 डॉलर कमाते हैं।
 
4. डेटा साइंस वर्सटाइल है
 
डेटा साइंस का उपयोग व्यापक रूप से स्वास्थ्य देखभाल, बैंकिंग, परामर्श सेवाओं और ई-कॉमर्स उद्योगों में होता है। इसलिए आपको विभिन्न क्षेत्रों में काम करने का अवसर मिलेगा।
 
5. डेटा साइंस (Data Science) किसी डेटा को बेहतर बनाता है
 
कंपनियों को अपने डेटा को संसाधित और विश्लेषण करने के लिए कुशल डेटा वैज्ञानिकों की आवश्यकता होती है। वे न केवल डेटा का विश्लेषण करते हैं बल्कि इसकी गुणवत्ता में भी सुधार करते हैं।

यह भी पढ़ें
डेटा साइंस में करियर कैसे बनाएं, जाने 6 आसान स्टेप्स में

 
6. डेटा वैज्ञानिक अत्यधिक प्रतिष्ठित पद है
 
डेटा वैज्ञानिक प्रासंगिक डेटा उपलब्ध कराकर कंपनियों को बेहतर व्यावसायिक निर्णय लेने में मदद करते हैं। कंपनियां डेटा वैज्ञानिकों पर भरोसा करती हैं और अपने ग्राहकों को बेहतर परिणाम प्रदान करने के लिए अपनी विशेषज्ञता का उपयोग करती हैं। इससे डेटा साइंटिस्ट्स को कंपनी में अहम पद मिलता है।
 
7. कोई और उबाऊ कार्य नहीं
 
डेटा साइंस (Data Science) ने विभिन्न उद्योगों (various industries) को निरर्थक कार्यों को स्वचालित करने ( automate redundant tasks) में मदद की है। कंपनियां दोहराए जाने वाले कार्यों (repetitive tasks) को करने के लिए मशीनों को प्रशिक्षित करने के लिए ऐतिहासिक डेटा (historical data) का उपयोग कर रही हैं।
 
8. डेटा साइंस (Data Science) उत्पादों (Products) को स्मार्ट बनाता है
 
डेटा साइंस में मशीन लर्निंग का उपयोग शामिल है जिसने उद्योगों को विशेष रूप से ग्राहक अनुभवों के अनुरूप बेहतर उत्पाद बनाने के दिशा में सक्षम बनाया है।
 
उदाहरण के लिए, ई-कॉमर्स वेबसाइटों का Recommendation Systems ग्राहकों को उनकी पूर्व में की गई खरीदारी के आधार पर personalized insights देता है। डेटा साइंस ने कंप्यूटर को मानव-व्यवहार को समझने और डेटा-संचालित निर्णय लेने की दिशा में सक्षम बनाया है।
 
9. डेटा साइंस जान बचा सकता है
 
डेटा साइंस की वजह से हेल्थकेयर सेक्टर में काफी सुधार हुआ है। मशीन लर्निंग के आगमन के साथ, प्रारंभिक चरण के ट्यूमर का पता लगाना आसान हो गया है। साथ ही, कई अन्य स्वास्थ्य देखभाल उद्योग (health-care industries) ग्राहकों (Clients) की सहायता के लिए डेटा साइंस (Data Science) का उपयोग कर रहे हैं।
 
10. डेटा साइंस आपको एक बेहतर इंसान बना सकता है
 
डेटा साइंस न केवल आपको एक बेहतरीन करियर देगा बल्कि व्यक्तिगत विकास में भी आपकी मदद करेगा। आप समस्या को सुलझाने का नजरिया रखने में सक्षम होंगे।

यह भी पढ़ें
12वीं के बाद कर सकते हैं डेटा साइंस का कोर्स

 
डेटा साइंस के नुकसान
 
जहां डेटा साइंस एक बहुत ही आकर्षक करियर विकल्प है, वहीं इस क्षेत्र में कई नुकसान भी हैं। उनमें से कुछ इस प्रकार हैं:
 
1. डेटा साइंस ब्लरी टर्म है
 
डेटा साइंस की कोई निश्चित परिभाषा नहीं है। डेटा साइंटिस्ट का सटीक अर्थ (the exact meaning of a Data Scientist) लिखना बहुत कठिन है। किसी डेटा साइंटिस्ट (Data Scientist) की विशिष्ट भूमिका उस क्षेत्र पर निर्भर करती है जिसमें कंपनी विशेषज्ञता प्राप्त कर रही है।
 
जबकि कुछ लोगों ने डेटा साइंस को विज्ञान का चौथा प्रतिमान बताया है, कुछ आलोचकों ने इसे केवल सांख्यिकी की रीब्रांडिंग कहा है।
 
2. डेटा साइंस में महारत हासिल करना असंभव है
 
कई क्षेत्रों का मिश्रण होने के कारण, डेटा विज्ञान सांख्यिकी, कंप्यूटर विज्ञान और गणित से उपजा क्षेत्र है। प्रत्येक क्षेत्र में महारत हासिल करना और उन सभी में समान रूप से विशेषज्ञ होना संभव नहीं है।
 
जबकि कई ऑनलाइन सिलेबस डेटा साइंस इंडस्ट्री उद्योग के स्किल्स डिफरेंस को पाटने की कोशिश कर रहे हैं, फिर भी क्षेत्र की विशालता को देखते हुए इसमें कुशल होना संभव नहीं है।
 
यह एक सतत परिवर्तनशील, गतिशील क्षेत्र है जिसके लिए व्यक्ति को डेटा साइंस के विभिन्न तरीकों को सीखते रहने की आवश्यकता होती है।
 
3. बड़ी मात्रा में डोमेन ज्ञान की आवश्यकता
 
डेटा साइंस का एक और नुकसान डोमेन नॉलेज पर इसकी निर्भरता है। सांख्यिकी और कंप्यूटर विज्ञान में काफी पृष्ठभूमि वाले व्यक्ति को डेटा विज्ञान की समस्या को उसकी पृष्ठभूमि के ज्ञान के बिना हल करना मुश्किल होगा।
 
उदाहरण के लिए, जीनोमिक अनुक्रमों के विश्लेषण पर काम करने वालों को आनुवंशिकी और आणविक जीव विज्ञान के कुछ ज्ञान के साथ एक उपयुक्त कर्मचारी की आवश्यकता होगी।
 
एक अलग पृष्ठभूमि के डेटा वैज्ञानिक के लिए विशिष्ट डोमेन ज्ञान हासिल करना मुश्किल हो जाता है।

यह भी पढ़ें
भारत में क्या हैं डिजिटल मार्केटिंग में करियर के अवसर

 
4. मनमाना डेटा (Arbitrary Data) अप्रत्याशित परिणाम (Unexpected Results) दे सकता है
 
एक डेटा वैज्ञानिक डेटा का विश्लेषण करता है और निर्णय लेने की प्रक्रिया को सुविधाजनक बनाने के लिए सावधानीपूर्वक भविष्यवाणियां करता है। कई बार, प्रदान किया गया डेटा मनमाना होता है और अपेक्षित परिणाम नहीं देता है।
 
5. डेटा गोपनीयता की समस्या
 
क्लाइंट का व्यक्तिगत डेटा मूल कंपनी को दिखाई देता है और कई बार सुरक्षा में चूक के कारण डेटा लीक हो सकता है। डेटा-गोपनीयता के संरक्षण (preservation of data-privacy ) और इसके उपयोग के संबंध में नैतिक मुद्दे (ethical issues) कई उद्योगों के लिए चिंता का विषय हैं।
 
डेटा साइंस के फायदे और नुकसान जानने के बाद अब हम इस क्षेत्र की पूरी तस्वीर जान सकते हैं। डेटा साइंस कई आकर्षक लाभों वाला क्षेत्र होने के साथ-साथ नुकसान से भी ग्रस्त है।
 

Related Article

Nepali Student Suicide Row: Students fear returning to KIIT campus; read details here

Read More

NEET MDS 2025 Registration begins at natboard.edu.in; Apply till March 10, Check the eligibility and steps to apply here

Read More

NEET MDS 2025: नीट एमडीएस के लिए आवेदन शुरू, 10 मार्च से पहले कर लें पंजीकरण; 19 अप्रैल को होगी परीक्षा

Read More

UPSC CSE 2025: यूपीएससी सिविल सेवा परीक्षा के लिए आवेदन करने की अंतिम तिथि बढ़ी, इस तारीख तक भर सकेंगे फॉर्म

Read More

UPSC further extends last date to apply for civil services prelims exam till Feb 21; read details here

Read More

Jhakhand: CM launches six portals to modernise state's education system

Read More

PPC 2025: आठवें और अंतिम एपिसोड में शामिल रहें यूपीएससी, सीबीएससी के टॉपर्स, रिवीजन के लिए साझा किए टिप्स

Read More

RRB Ministerial, Isolated Recruitment Application Deadline extended; Apply till 21 February now, Read here

Read More

RRB JE CBT 2 Exam Date: आरआरबी जेई सीबीटी-2 की संभावित परीक्षा तिथियां घोषित, 18799 पदों पर होगी भर्ती

Read More